变频器安装的六大误区优劣详解

作者:火博app 发布时间:2021-01-07 20:33

  进行变频器切换:如当变频故障时切换到工频状态运行,或是当采用一拖二方式,一台故障,变频器转向拖动另一台电动机等情况。所以许多用户会认为在变频器输出回路加装电磁开关、电磁接触器是标准的配置,是安全断开电源的方式,事实上这种做法存在较大的隐患。

  弊端:在变频器还在运行的时候,接触器先行断开,突然中断负载,浪涌电流会使过电流保护动作,会给整流逆变主电路产生一定的冲击。严重的,甚至会使变频器输出模块IGBT造成损坏。同时,在带感性电动机负载时,感性磁场能量无法快速释放,将产生高电压,损伤电动机和连接电缆的绝缘。

  应对策略:将变频器输出侧直接与电动机电缆相连,正常起停电动机可以通过触发变频器控制端子来实现,达到软起软停的效果。若必须在变频调速器输出侧使用接触器,则必须在变频调速器输出与接触器动作之间,加以必要的控制联锁,保证只有在变频调速器无输出时,接触器才能动作。

  在设备正常停运时,很多用户习惯于断开变频器交流输入电源开关,认为那样更安全、也可以节能。

  弊端:此种做法,表面上似乎可以起到保护变频器不受电源故障冲击的作用。实际上,变频器长时间不带电,加上现场环境湿度影响,会造成内部电路板受潮而发生缓慢氧化、逐渐出现短路现象。这就是在变频器断电停运一段时间后,再次送电时会频繁报软故障的原因。

  应对策略:除设备检修外,应使变频器长时间处于带电状态。除此之外,还应开启变频控制柜的上下风扇、在柜内放置干燥剂或安装自动温湿度控制加热器,保持通风和环境干燥。

  在部分厂矿、地下室、露天安装使用的变频器控制柜,会经受着如高温、粉尘、潮湿等恶劣环境的严酷考验。为此,很多用户会选用密封型式的变频柜。这样虽然在一定程度上可以起到防雨、防尘的效果,但同时也带来了变频器散热不良的问题。

  弊端:控制柜密封严实会使得变频器因通风散热能力不足而引起内部元器件过热,热敏元件保护动作,造成故障跳闸,设备被迫停运。

  应对策略:在变频器控制柜上部加装透气的防雨罩,且带有防尘滤网,同时作为排气口。下部也同样开槽安装带滤网的风扇,作为进气口。可以形成空气流通,同时过滤环境里的粉尘。冷却空气流通方向:从底部流向顶部。变频器之间的横向安装距离应不小于5mm,进入变频器的冷却空气温度不能超过+40摄氏度。如果环境温度长时间在+40摄氏度以上,则需考虑将变频器安装在带空调的小室内。

  在控制箱中,变频器一般应安装在箱体上部,绝对不允许把发热元件或易发热的元件紧靠变频器的底部安装。

  部分企业由于用电容量限制,电压品质得不到保障,特别是大型用电设备投用时,会造成厂站内母线电压降低,负载功率因数明显随着下降。为提高电压品质,用户通常在变频器输出端并联功率因数补偿电容器,希望可以改善电动机功率因数。

  弊端:将功率因数补偿电容器与浪涌吸收器连接在电机电缆上(在变频器和电机之间),它们的影响不仅会降低电机的控制精度,还会在变频器输出侧形成瞬变电压,引起变频器的永久性损坏。如果在变频器的三相输入线上并联功率因数补偿电容器,必须确保该电容器和变频器不会同时充电,以避免浪涌电压损坏变频器。变频器的电流流入改善功率因数用的电容器,由于其充电电流造成变频器过电流故障,所以不能起动。

  应对策略:将电容器拆除后运转,至于改善功率因数,在变频器的输入侧接入AC电抗器是有效的。

  弊端:在电源电缆发生短路故障时,断路器保护动作跳闸由于断路器本身的固有动作时间而产生延时(公众号:泵管家),此期间会将短路电流引入变频器内部,造成元件损坏。

  应对策略:只要电缆是根据额定电流选型的,变频器传动单元就能保护自身、输入端和电机电缆,以防止热过载,并不需要附加额外的热过载保护设备。配置熔断器将可在短路情况下保护输入电缆,在传动装置内部短路时减少装置损坏和防止相连设备的损坏。

  检查配置的熔断器动作时间应低于0.5秒。动作时间取决于熔断器类型(gG或aR)、供电网路阻抗、电源电缆的横截面积、材料和长度。当使用gG熔断器超出0.5秒动作时间时,快熔(aR)在多数情况下可将动作时间减少到一个可接受水平。熔断器必须为无延时类型。

  断路器对传动设备不能提供足够快的保护,因为它们的反应速度比熔断器慢。因此需要快速保护时,应使用熔断器而不是断路器。

  许多用户在采购变频器时,通常只根据驱动电动机的功率来匹配变频器容量。其实,电动机所带动的负载不一样,对变频器的要求也不一样。

  弊端:由于电动机所带的负载特性存在差异,如果不充分考虑综合因素,可能会造成变频器使用不当而损坏,同时由于未配备必要的制动单元和滤波器,可能会引起安全风险。

  1)风机和水泵是最普通的负载:对变频器的要求最为简单,只要变频器容量等于电动机容量即可(空压机、深水泵、泥沙泵、快速变化的音乐喷泉需加大容量)。

  2)起重机类负载:这类负载的特点是启动时冲击很大,因此要求变频器有一定余量。同时,在重物下放肘,会有能量回馈,因此要使用制动单元或采用共用母线)不均行负载:有的负载有时轻,有时重,此时应按照重负载的情况来选择变频器容量,例如轧钢机

  、粉碎机械、搅拌机等。4)大惯性负载:如离心机、冲床、水泥厂的旋转窑,此类负载惯性很大,因此启动时可能会振荡,电动机减速时有能量回馈。。应该用容量稍大的变频器来加快启动,避免振荡。配合制动单元消除回馈电能。

  文章出处:【微信号:gkongbbs,微信公众号:工控论坛】欢迎添加关注!文章转载请注明出处。

  因各类型变频器功能有差异,而相同功能参数的名称也不一致,为叙述方便,本文以某变频器基本参数名称为例。....

  变频器有通用型变频器和矢量型变频器两种,不过这两种变频器虽然都可以使用,但是这两种变频器还是有区别的....

  水泵变频器调压力步骤: 1、打开PID闭环控制;2、接压力闭环;3、设置压力反馈,设置给定压力;

  水泵变频器是通过改变电机工作电源的频率和幅度的方式来控制交流电动机的电力传动元件,水泵用变频器的作用....

  使用台达变频器时应注意的哪些问题是什么呢?这是本期我们必须向大家说明的问题,接下来武汉世佳伟业科讯电....

  在变频器的维修中,遇到变频器通电后没有显示的情况。正常情况下,即使变频器出现故障,通电后也会有相应的....

  台达变频器目前在工业自动化市场建立了广泛的品牌认知度。各系列产品根据扭矩、损失、过载、超速运行等不同....

  台达变频器作为目前电器控制领域非常普及的控制设备,几乎渗透到工业生产活动的各个角落。对于一些新进入电....

  大家都知道变频器的使用环境温度每上升10℃,使用年限就减半。因此,在日常使用中,应根据变频器的实际使....

  大家都知道,变频器是台达自动化的开山之作,也是目前台达自动化销售额最大的产品。 随着包装机械自动化的....

  台达变频器主要是为了调节工作频率,减少工作中的能耗,保证设备正常工作。其主要贡献是减少设备直接启动时....

  大家都知道变频器由多个部件组成,其中一些部件长期工作后性能逐渐下降老化也是变频器故障的主要原因,为了....

  大家都知道造纸企业是高耗能企业,平均每造纸一吨所耗电能在500度以上,电能消耗非常严重。而传统的造纸....

  变频器时间用久了会出现故障,当我们在变频器维修过程中检测到故障时,我们应该如何判断变频器维护的故障?....

  台达变频器目前在工业自动化市场建立了广泛的品牌认知度。各系列产品根据扭矩、损失、过载、超速运行等不同....

  变频器是台达自动化的开山之作,也是目前台达最大的增长趋势。台达变频器在高端产品市场和经济产品市场中一....

  我国变频器行业的市场规模整体呈上升态势,从2012年至2019年,中国变频器行业规模除2015年有小....

  由于高压变频器的应用领域和高效节能的市场需求与鼓励政策,高压变频器市场规模一直保持着较高的增长率,而....

  通常情况下,由于控制回路中对电动机的保护相当全面,从而导致其对人员的伤害概率较低,不过一种极端情况却....

  变频器容量的选择由很多因素决定,如电动机容量、电动机额 定电流、电动机加/减速时间等,其中最主要的是....

  1、变频器是一种典型的采用了变频技术的电动机驱动控制用电气设备 2、变频器电路由主电路和控制电路....

  我们平时所用的普通变频器大部分拖动的都是普通三相异步电动机,比如在数控车床中的主轴电机、风机、水泵以....

  很多人问我,想成为一名电气工程师需要学习哪方面的知识?今天为大家汇总一下。 01 配电及电气控制基础....

  在雷达设计中,上变频电路的作用是将晶体振荡器产生的雷达信号混频成射频信号,经信号放大,达到发射机所需....

  一、关于驱动的类别 变频器在工控维修行业中,是绕不开的入门级设备,变频器的主要作用就是驱动电机,把小....

  过载,是一个时间概念,是指负载在连续时间内超过额定负载一定的倍数。过载,最重要的概念就是连续时间。比....

  变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。可分为交—交变频器,交—....

  P1300高压差分探头是具有浮地测量功能的高压差分探头。其带宽达到50MHz,满足了大部分测试系统的....

  传压力表的1、2、3端中,其中有两端,在没有压力时,电阻值在30欧左右。随着压力的上升,电阻值最大为....

  功能 自动再启动功能(通过 P1210 使能)可以在电源故障(F3“欠电压”)以后根据激活的 ON命令自动启动电机。 变频器会自动...

  功能 SINAMICS V20 变频器通过直流母线连接可以在两台同型号变频器之间实现电路并联。 此接线方式具备以下优点: 将一...

  功能 设置 HO/LO 过载可选择低过载模式用于水泵和风机,即 SINAMICS V20 变频器重要的应用对象。 低过载模式可增大...

  典型系统接线 推荐使用的熔断器类型 推荐使用的电机控制器类型 接线图 说明 每个模拟量输入处电位计的电阻值必须 ≥...

  在控制电柜内抑制干扰经济有效的措施是确保在安装时将干扰源与可能被干扰的设备进行隔离。 因此必须将控制电柜分成多个 EMC ...

  变频器必须安装在封闭的电气操作区域或控制电柜内。 安装方向 始终垂直安装变频器。 安装间距 [table=398] [tr][td=114]上...

  您可使用选件 DIN 导轨安装件,在 DIN 导轨上安装外形尺寸 A 或 B。 不同外形尺寸的变频器还可以采用另外两种安装方式。...

  《图解西门子变频器入门到实践》从变频器设计、使用以及维修人员的实际需要出发,介绍了通用变频器的理论,....

  一、 项目背景 该项目为将大卷焊锡通过放卷,牵引,收卷将材料分配到可配额的设备 二、 项目描述 该项....

  根据相关调查显示,截至2020年,全国变频器潜在市场约为1200-1800万亿元,而国内累计推广应用....

  LK系列变频器采用模块化设计,在满足客户通用需求的前提下,通过扩展设计可以灵活地满足客户个性化需求、....

  11月28日-30日,以“创新引领 智造未来”为主题的2020长沙网络安全·智能制造大会在长沙国际会....

  1)环境温度是否正常,要求在-10~+40℃范围内,以25℃左右为好。湿度是否符合要求,门窗通风散热是否良好;变频器下进风口、...

  目前对于用上位机以通讯方式,控制变频器远程监视控制的应用越来越多,例如通过RS485、Prcfibus-Dp,CANink,CANo...

  我们使用变频器目的,就是为了通过改变变频器的输出频率来改变电动机的转速。如果变频器频率调不上去,而且....

  成熟三相变频器方案,基于STM32F103设计开发: 原理图和PCB源文件(AD软件)。 BOM清单....

  变频器电流之所以不平衡,是由于电机定子线圈阻值不等引起的,在正常情况下,定子三相线圈阻值是相等的,由....

  变频器是我们对交流电动机进行控制的一种电力控制设备,变频器很好的应用了变频技术以及微电子技术,可以很....

  变频器的散热风扇为什么要定期更换? 在现今电气控制领域,变频器绝对是首屈一指的当红明星。无奈做为电气....

  近日,禾望电气所研制开发的两件大功率变频器通过了中国机械工业联合会的鉴定,并给予高度评价,这两件设备....

  目前风能是发展最快、最具竞争力的新能源之一。因此,风力发电成为各国学者研究的重点。

  电动机换向抽油机是机电一体化、高效节能产品。采用高质量的无速度反馈矢量控制型Vacon变频器,Vac....

  本书是一本介绍变频技术的入门读物。本书主要介绍变频常用电力电子器件,交-直-交变频技术,脉宽调制技术....

  时光荏苒,斗转星移。弹指间,攀钢提钒炼钢厂的大方坯连铸、两座新转炉以及除尘系统拔地而起,无不成为每个....

  众所周知高次谐波会使变频器输出电流增大,造成电机绕组发热,产生振动和噪声,加速绝缘老化,甚至还有可能....

  大部分使用拉丝机的国内金属加工企业来说,对变频调速器并不陌生,这是因为变频调速器很早之前就有在拉丝机....

  行业周知,功率半导体用于所有电力电子领域,市场成熟稳定且增速缓慢。不过,随着新能源汽车、可再生能源发....

  首先检查一下电源开关通电方面是不是出现了问题,如果不确定可以进行一下专业的电源测试,如果是电源问题直....

  CU04是采用硅栅CMOS技术制造的先进高速CMOS无缓冲逆变器。它实现了类似于等效双极肖特基TTL的高速操作,同时保持CMOS低功耗。 输入可承受高达7V的电压,允许5V系统与3V系统的接口。 特性 高速:t PD = 3.5ns(典型值)在V CC = 5V 低功耗:I CC =2μA(Max),T A = 25 C 高抗噪性:V NIH = V NIL = 10%V CC (Min。) 输入时提供断电保护 平衡传播延迟 专为2V至5.5V工作范围而设计 低噪音:V OLP = 0.8V(最大) 引脚和功能与其他标准逻辑系列兼容 闩锁性能超过300mA ESD性能:HBM

  2000V;机器型号

  200V 芯片复杂性:12个FET或3个等效门 无铅封装可用 电路图、引脚图和封装图...

  04 MiniGateTM是一款先进的CMOS高速反相缓冲器,占用空间极小。器件输入与TTL型输入阈值兼容,输出具有完整的5.0 V CMOS电平输出摆幅。无论电源电压如何,当施加高达7.0伏的电压时,NLU1GT04输入和输出结构都能提供保护。 特性 高速:tPD = 3.8 ns(典型值) )@ VCC = 5.0 V 低功耗:在TA = 25 C时ICC = 1uA(Max) TTL兼容输入:VIL = 0.8 V; VIH = 2.0 V CMOS兼容输出: VOH

  U04是单个无缓冲变频器,工作电压范围为1.65-5.5 V,采用非常流行的SC70 / SC88a / SOT-353封装或1.6 x 1.6 X.6 mm SOT553封装。 特性 微小的SOT-353和SOT-553封装 源/汇+ + - 16 mA,4.5 VV CC 过压容差输入和输出 带有NC7SZU04P5X,TC7SZU04FU和TC7SZU04AFE的引脚引脚 芯片复杂性:FETs = 20 设计用于1.65 V至5.5 VV CC 无铅封装可用 电路图、引脚图和封装图

  3是一款20A降压转换器(内置MOSFET),工作电压范围为3V至21V,无需外部偏置。该固定式变频器具有高效率,可调节输出以提供低至0.6V的电压。可调电流限制允许器件用于多个电流水平。该器件采用耐热增强型6mm x 6mm QFN封装,高效电压模式同步降压转换器,工作电压为3 V至21 V,输出电压低至0.6 V,最高25 A DC负载或30 A瞬时负载。 特性 优势 宽输入电压范围为3V至21V 允许同一器件用于3.3V,5V和12V母线MHz开关频率 用户可选择的选项,允许在效率和解决方案尺寸之间进行优化权衡 无损耗低侧FET电流检测 提高效率 0.6V内部参考电压 低压输出以适应低压核心 外部可编程软启动 降低浪涌电流并防止启动时出现无根据的过电流 预偏置启动 防止反向电流流动 所有故障的打嗝模式操作 如果故障情况消除,则允许重新启动 可调输出电压 灵活性 可调节电流限制 优化过流条件。允许较低饱和电流的较小电感器用于较低电流应用 输出过压保护和欠压电压保护 应用 终端产品 高电流POL应用 AS...

  Broadcom光纤(FO)短链路是一种经济高效的半导体产品,可在单个PCB上提供12 kV瞬态电流隔离。 FO Short Link基于650 nm光纤技术,适用于逆变器/驱动器,电力电子或医疗设备等应用。 FO Short Link产品提供爬电距离和间隙距离,最小值为18.1 mm。此外,HFBR-3810MSZ器件提供金属屏蔽选项,可提供更高的EMI和ESD抗扰度。 特性 金属屏蔽选项,可提供更高的EMI和ESD抗扰度 信号速率为DC至10MBaud的数据传输 具有CMOS / TTL输出的直流耦合接收器,易于设计;无需数据编码或数字化电路 高抗噪性 符合IEC 60664-1的瞬态电压抑制高达12kV 激光等级1,根据IEC-60825:修订2001 符合RoHS标准 应用 变频器/驱动器 电力电子 医疗/ X光设备 电隔离...

  Broadcom光纤(FO)短链路是一种经济高效的半导体产品,可在单个PCB上提供12 kV瞬态电流隔离。 FO Short Link基于650 nm光纤技术,适用于逆变器/驱动器,电力电子或医疗设备等应用。 HFBR-3810Z和HFBR-3810MSZ器件提供爬电距离和间隙距离,最小值为18.1 mm。 功能 信号速率为DC至10MBaud的数据传输 具有CMOS / TTL输出的直流耦合接收器,易于设计;无需数据编码或数字化电路 高抗噪性 符合IEC 60664-1的瞬态电压抑制高达12kV 激光等级1,根据IEC-60825:修订2001 符合RoHS标准 应用 变频器/驱动器 电力电子 医疗/ X光设备 电隔离...

  这些TTL十六进制反相缓冲器/驱动器具有高压集电极开路输出,用于连接高电平电路(如MOS)或驱动高电平电流负载(如灯或继电器),也可用作驱动TTL输入的变频器缓冲器。 SN5406和SN7406的最小击穿电压为30 V. SN5416和SN7416的最小击穿电压为15 V. SN5406和SN5416的最大灌电流为30 mA,SN740和SN7416的最大灌电流为40 mA。 特性 将TTL电压电平转换为MOS电平 高漏电流能力 输入钳位二极管简化系统设计 指示灯和继电器的开路集电极驱动器 输入与大多数TTL电路完全兼容 参数 与其它产品相比反向缓冲器/驱动器 Technology Family VCC (Min) (V) VCC (Max) (V) Bits (#) Voltage (Nom) (V) F @ Nom Voltage (Max) (Mhz) ICC @ Nom V...


火博app
© 2013 北京格林吉能源科技有限公司.版权所有